L-complete Hopf Algebroids and Their Comodules

نویسنده

  • ANDREW BAKER
چکیده

We investigate Hopf algebroids in the category of L-complete modules over a commutative Noetherian regular complete local ring. The main examples of interest in algebraic topology are the Hopf algebroids associated to Lubin-Tate spectra in the K(n)-local stable homotopy category, and we show that these have Landweber filtrations for all finitely generated discrete modules. Along the way we investigate the canonical Hopf algebras associated to Hopf algebroids over fields and introduce a notion of unipotent Hopf algebroid generalising that for Hopf algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graded Comodule Categories with Enough Projectives

It is well-known that the category of comodules over a flat Hopf algebroid is abelian but typically fails to have enough projectives, and more generally, the category of graded comodules over a graded flat Hopf algebroid is abelian but typically fails to have enough projectives. In this short paper we prove that the category of connective graded comodules over a connective, graded, flat, finite...

متن کامل

Morita Theory for Hopf Algebroids and Presheaves of Groupoids

Comodules over Hopf algebroids are of central importance in algebraic topology. It is well-known that a Hopf algebroid is the same thing as a presheaf of groupoids on Aff , the opposite category of commutative rings. We show in this paper that a comodule is the same thing as a quasi-coherent sheaf over this presheaf of groupoids. We prove the general theorem that internal equivalences of preshe...

متن کامل

Tannaka-krein Duality for Hopf Algebroids

We develop the Tannaka-Krein duality for monoidal functors with target in the categories of bimodules over a ring. The Coend of such a functor turns out to be a Hopf algebroid over this ring. Using a result of [4] we characterize a small abelian, locally finite rigid monoidal category as the category of rigid comodules over a transitive Hopf algebroid.

متن کامل

On Cohomology of Hopf Algebroids

Inspired by [3] we introduce the concept of extended Hopf algebra and consider their cyclic cohomology in the spirit of Connes-Moscovici [3, 4, 5]. Extended Hopf algebras are closely related, but different from, Hopf algebroids. Their definition is motivated by attempting to define cyclic cohomology of Hopf algebroids in general. Many of Hopf algebra like structures, including the Connes-Moscov...

متن کامل

Para-Hopf algebroids and their cyclic cohomology

We introduce the concept of para-Hopf algebroid and define their cyclic cohomology in the spirit of Connes-Moscovici cyclic cohomology for Hopf algebras. Para-Hopf algebroids are closely related to, but different from, Hopf algebroids. Their definition is motivated by attempting to define a cyclic cohomology theory for Hopf algebroids in general. We show that many of Hopf algebraic structures, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009